ECOGEARCHEM

RELIABLE \& VERSATILE GEAR PUMPSFlow:
up to $55 \mathrm{gpm}(208 \mathrm{lpm})$

Differential Pressure:
100 psi (7.4 bar)

Working Pressure:
200 psi (13.8 bar)

E
Temperature:
from -100 to $450^{\circ} \mathrm{F}\left(-73\right.$ to $232^{\circ} \mathrm{C}$)

Viscosity:

up to $100,000 \mathrm{cPs}$

ECO GEARCHEM

PULSAFEEDER EXPERTISE

For over 75 years, Pulsafeeder, Inc. continues to be a global leader in chemical dosing innovation and fluid handling technology. With extensive experience in providing fluid handling solutions, our pumps and systems are designed to handle your toughest applications. Known for their rugged construction and dependable performance, our products are of the highest level of manufacturing excellence and quality control.

ECO GEAR PUMPS

ECO gear pumps offer the reliability you need to safely handle clear lubricating and non-lubricating liquids. Extensive material options provide versatility for pumping low or high viscosity fluids over a broad range of temperatures, pressures, and corrosive service.

Typical applications include chemical transfer, cyclic operation and continuous production systems, both open ended and closed-loop. ECO gear pumps are well suited for pilot plants, vacuum systems, and metering applications.

PRODUCT SPECIFICATIONS

GENERAL SPECIFICATIONS MODEL SERIES	G2 / GA / GC	G4 / GA / GC	G6 / GA / GC	G8 / GA / GC	GH6	CH8	GA12	GA16
Port Size \& Type	1/4" NPT or BSPT	1/2" NPT or BSPT	3/4" NPT or BSPT	$1{ }^{1 \prime}$ NPT or BSPT	3/4" NPT or BSPT	$1{ }^{1 \prime}$ NPT or BSPT	11/2" FNPT or BSPT: 150\# ANSI RF flange	2" 150\# ANSI RF flange
Port Locations	Side Inlet \& Outlet							
Direction of Rotation	Bidirectional							
Theoretical Displacement	$.108 \mathrm{gal} / 100 \mathrm{rev}$ ($4.10 \mathrm{cc} / \mathrm{rev}$)	$.189 \mathrm{gal} / 100 \mathrm{rev}$ ($7.16 \mathrm{cc} / \mathrm{rev}$)	.684 gal / 100 rev ($25.89 \mathrm{cc} / \mathrm{rev}$)	$\begin{gathered} \hline 1.368 \mathrm{gal} / 100 \mathrm{rev} \\ (51.79 \mathrm{cc} / \mathrm{rev}) \\ \hline \end{gathered}$.684 gal / 100 rev $(25.89 \mathrm{cc} / \mathrm{rev})$	$\begin{array}{\|c\|} \hline 1.368 \mathrm{gal} / 100 \mathrm{rev} \\ (51.79 \mathrm{cc} / \mathrm{rev}) \\ \hline \end{array}$	$\begin{gathered} 2.792 \mathrm{gal} / 100 \mathrm{rev} \\ (105.7 \mathrm{cc} / \mathrm{rev}) \end{gathered}$	$\begin{array}{\|c\|} \hline 5.584 \mathrm{gal} / 100 \mathrm{rev} \\ (211 \mathrm{cc} / \mathrm{rev}) \\ \hline \end{array}$
Drive Shaft Diameter	$3 / 8$ "	$3 / 8$ "	$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	$3 / 4$ "	$3 / 4$ "	1 "	1 "
Maximum Differential Pressure	$100 \mathrm{psi}(700 \mathrm{kPa})$	$100 \mathrm{psi}(700 \mathrm{kPa})$	$100 \mathrm{psi}(700 \mathrm{kPa})$	$50 \mathrm{psi}(350 \mathrm{kPa})$	$200 \mathrm{psi}(1380 \mathrm{kPa})$	$100 \mathrm{psi}(700 \mathrm{kPa})$	$100 \mathrm{psi}(700 \mathrm{kPa})$	$100 \mathrm{psi}(700 \mathrm{kPa})$
Minimum System Pressure	0.1 mm Hg (abs)							
Maximum System Pressure	200 psi	200 psi	150 psi	150 psi	210 psi	200 psi	200 psi	200 psi
Maximum Speed	1725 rpm	1150 rpm	1150 rpm					
Capacity at Max Speed, 0 psi, 1 cPs	$\begin{aligned} & 1.5 \mathrm{gpm} \\ & 5.68 \mathrm{lpm} \end{aligned}$	$\begin{gathered} 3 \mathrm{gpm} \\ 11.36 \mathrm{lpm} \end{gathered}$	$\begin{gathered} 10 \mathrm{gpm} \\ 37.85 \mathrm{lpm} \end{gathered}$	$\begin{gathered} 22 \mathrm{gpm} \\ 83.28 \mathrm{lpm} \end{gathered}$	$\begin{gathered} 10 \mathrm{gpm} \\ 37.85 \mathrm{lpm} \end{gathered}$	$\begin{gathered} 22 \mathrm{gpm} \\ 83.28 \mathrm{lpm} \end{gathered}$	$\begin{aligned} & 28 \mathrm{gpm} \\ & 106 \mathrm{lpm} \end{aligned}$	$\begin{gathered} 60 \mathrm{gpm} \\ 227.12 \mathrm{lpm} \end{gathered}$
Max Viscosity at Reduced Speed	$100,000 \mathrm{cP}$							
Minimum Viscosity	none							
Maximum Fluid Temperature	$450^{\circ} \mathrm{F}\left(232^{\circ} \mathrm{C}\right)$							
Minimum Fluid Temperature	$-100^{\circ} \mathrm{F}\left(-73^{\circ} \mathrm{C}\right)$							
Fluid pH Range	0-14	0-14	0-14	0-14	0-14	0-14	0-14	0-14
Bearing Type	Internal Sleeve							
Bearing Lubrication	By Pumped Fluid							
Packing Arrangements	$\begin{gathered} \text { Standard or } \\ \text { Lantern Ring Box } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Standard or } \\ \text { Lantern Ring Box } \\ \hline \end{array}$	Standard or Lantern Ring Box	Standard or Lantern Ring Box	Lantern Ring Box	Lantern Ring Box	Lantern Ring Box	Lantern Ring Box
Mechanical Seals	Single Internal, Double or External	Single Internal, Double or Externa	Single Internal, Double or External	Single Internal, Double or External	Single Internal or Double			
Approximate Weight, Pump Only	4.2 lbs (1.9 kg)	4.2 lbs (1.9 kg)	$7 \mathrm{lbs}(3.2 \mathrm{~kg}$)	$10 \mathrm{lbs}(4.5 \mathrm{~kg})$	$11.2 \mathrm{lbs}(5.1 \mathrm{~kg}$)	$14 \mathrm{lbs}(6.3 \mathrm{~kg})$	$39 \mathrm{lbs}(17.6 \mathrm{~kg})$	$80 \mathrm{lbs}(36 \mathrm{~kg}$)

PUMP IDENTIFICATION NUMBER SELECTION GUIDE

NOTES:

(1) Maximum differential pressure allowed for plastic/plastic gears is 50 psig
(2) Pumps with metallic drive and idler gears require minimum viscosity of 100 cPs and are limited to 1440 rpm maximum speed for G2-GH8 pumps and 1150 rpm for GA12-16 pumps.
(3) Ceramic wear plates with metallic gears require minimum viscosity of 100 cPs.
(4) Viton ${ }^{\circledR}$ U-cup lip seals are limited to 25 psi.
(5) Not all mechanical seals available in all metallurgies
(6) Double mechanical seals must be pressurized with seal fluid 15 to 20 psig above the pump discharge pressure.

INSTALLATIONS

Typical gear pump installation with recommended accessories.

PUMP KOPKIT \& ACCESSORIES

In addition to the material offerings for ECO pumps, there are a variety of options that allow you to customize your pump to meet the application specifications. Flush ports and pedestal assemblies are also available (not shown).

KOPKIT ${ }^{\circledR}$

To guard against unnecessary down-time, we recommend you purchase an ECO KOPkit ${ }^{\text {(}}$ (Keep-On-Pumping kit) with the purchase of your pump.

BASE MOUNTED UNITS

Pumps can be mounted on formed bases of heavy-gauge carbon or stainless steel. These complete units provide easy installation.

BOLT-ON JACKET

Bolt-on jackets enable the user to maintain close control of pumping temperatures.

Pulsafeeder, Inc.
2883 Brighton Henrietta Town Line Rd
Rochester, NY 14623
Phone: +1 (585) 292-8000
pulsa@idexcorp.com
pulsa.com

